
(0-AIa B6 ILLINOIS UNIV AT CHICAGO CIRCLE DEPT OF MATHEMATICS FIG 12/1
APPLICATION OF THE CONDITIONAL POPULATION-MIXTURE MODEL TO IMAG--ETC(U)

AUG 82 S L SCLOVE NO001N-80-C-0408
JNCLASSIFIED UICC-MATH-TR-82-5 NLEEEEEEEEEE.E
flfllIIfflfflfllfIf EN



. / 1J

APPLICATION OF THE CONDITIONAL POPULATION-MIXTURE MODEL TO
IMAGE SEGMENTATION

by

STANLEY L. SCLOVE

Departments of Mathematics and Quantitative Methods
University of Illinois at Chicago Circle

TECHNICAL REPORT NO. 82-5
0August 13, 1982

Revision of Technical Report No. 80-1, August 15, 1980

PREPARED FOR THE
OFFICE OF NAVAL RESEARCH

UNDER
CONTRACT N00014-80-C-0408,

TASK NR042-43
with the University of Illinois at Chicago Circle

Development of Procedures and Algorithms for
Pattern Recognition and Image Processing
based on Two-Dimensional Markov Models

Principal Investigator: Stanley L. Sclove

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

Approved for public release; distribution unlimited

CTD..., D T IC .,Uj
__1~If Er:.:'

La-- QUANTITATIVE METHODS DEPARTMEN TSEP 0 11982
COLLEGE OF BUSINESS ADMINISTRATION S

UNI'ERSII*" OF ILLINOIS AT CHICAGO CIRCLE
BOX 4348, CHICAGO, IL 60680

3/29/82

82 W%'01



APPLICATION OF THE CONDITIONAL POPULATION-MIXTURE MODEL TO

IMAGE SEGMENTATION

STANLEY L. SCLOVE

Departments of Mathematics and Quantitative Methods
University of Illinois at Chicago Circle

CONTETS

Abstract

I. Introduction

II. The Probability Model

III. The Segmentation Algorithm

IV. Application to Particular Distributions

A. Multivariate Normal Distributions with Common Covariance Matrix

Relation to the isodata procedure
Relation to the k-means procedure
A numerical example

B. Multivariate Normal Distributions with Different Covariance
Matrices

Numerical example, continued

V. Comparison with the Method Based on the Standard Mixture Model

VI. Some Remarks on Statistical inference

A. Confidence Sets
Accession For

B. Some Remarks on Choice of Number of Classes NTIS C-G&I
DUIC TMB);

VII. Discussion U "

A. Conclusions 10

B. Remarks Itr ..

C. Alternative Models : i y Codes
A ..,' L a nd/or

Dizt Ep-cial

Acknowledgements

References __ _

JT77



APPLICATION OF THE CONDITIONAL POPULATION-MIXTURE MODEL TO
IMAGE SEGMENTATION

STANLEY L. SCLOVE
Departments of Mathematics and Quantitative Methods

University of Illinois at Chicago Circle

Address:
Quantitative Methods Department

College of Business Administration
University of Illinois at Chicago Circle

Box 4348, Chicago, IL 60680

ABSTRACT

The problem of image segmentation is considered in the context of

a mixture of probability distributions. The segments fall into

classes. A probability distribution is associated with each class of

segment. Parametric families of distributions are considered, a set of

parameter values being associated with each class. With each

observation is associated an unobservable label, indicating from which

class the observation arose. Segmentation algorithms are obtained by

applying a method of iterated maximum likelihood to the resulting

likelihood function. A numerical example is given. Choice of the

number of classes, using Akaike's information criterion (AIC) for model

identification, is illustrated.

Key words and phrases: Imdge processing, image segmentation, pixel

classification; pattern recognition; mixtures of distributions; cluster

analysis, isodata procedure, k-means procedure; Mahalanobis distance,

multivariate statistical analysis; relaxation methods
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I. INTRODUCTION

A digital (i.e., numerical) image may be considered as a rectangular

array of picture elements (pixels), indexed by (i,j). At each pixel the same

p features are observed. We denote the features by

X X ... , Xp.

The vector of features is

X- = (X X X).
-2' '' p

The observed digital image is

(xij. i=1,2, ... I, j=l,2,. .. ,J),

where x., x .X.i)

'j = x(x1 j, 2ij ,  '', pij )

is the vector of numerical values of the p features at pixel (i,j).

Examples. (i) In color television, p = 3 colors, the pixels are the
dots on the screen, and for pixel (i,j), x red level, x.. =

lij i
green level, and x3i j = blue level. (ii) In LANDSAT data, p=4

spectral channels, one in the green/yellow visible range, the second in the
red visible range, and the other two in the near infrared range.

An object is a set of contiguous pixels which may be assumed to

be members of a common class. One task of image processing is

segmentation, grouping of pixels with a view toward identifying

objects.

In this context the conceptual model is that the image is a set of

pixels. and, also, the image consists of several segments. Each pixel
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belongs to one and only one segment. The segments fall into several

classes. For example, in a picture of a house the classes might be

brick, sky, grass, shadow and brush. Note that there might be several

separate areas of, say, grass. Each of these areas is a segment,

but they all belong to the class, "grass."

The statistical model accompanying this conceptuai model is as follows:

--With each class of segment is associated a probability
distribution for the feature vector X;

--With each pixel is associated a label which, were it known to us,
would tell us which class of segment the pixel belongs to.

Each pixel thus gives rise to a pair (X,r), where X is observable and T is

rot. In the context of this statistical model segmentation is ~

estimation of the set of labels.

The number of classes will be denoted by k. The algorithms developed

here try one value of k at a time. Methods of comparing the results for

different values of k will be discussed.

Often one considers parametric models, in which the class-conditional

probability functions f(xic) are assumed known, except possibly for

the values of distributional parameters. That is,

f(xc) = hx;B ,

where B is the parameter. E.g., in the multivariate Gaussi&n case
-c

consists of the mean and covariance matrix for class c. The

parameters are usually unknown. However, image processing is usually

done in a context where there is prior information about the parameters.

This can provide initial estimates for an iterative estimation algorithm.

We shall write x rather than x.., using a single subscript t rather

than the double subscript ij for the pixels, even though they are in a

--ii V m
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two-dimensional array.

The label associated with the t-th pixel will be denoted by

Ttv t = 1,2,.... n = IJ. The label is equal to c if and only if

pixel t belongs to class c. It is convenient to represent the information

carried by the label in a k-dimensional vector 6 which consists

of k-l zeros and a single 1, the position of the 1 indicating which segment

pixel t belongs to; i.e., 8 has a 1 as its It-th element and O's
-t

elsewhere. The probability density function (p.d.f.) of X, given e

is

f(x le = e f(x Ic), 1 .1)

where the summation is for c = 1,2,...,k, and 8 is the c-thct

element of 8-t

II. THE PROBABILITY MODEL

It is assumed that the X's are conditi, .ly independent, given the T's.

(More complicated models are under study.) Then their joint p d.f. is

the product over t = 1.2.....n of factors (1.1).

Note that, if X11 X2 "'" X are independent and identically distributed

with a standard mixture density

ffx) = I f(xlc)T
- c - c

where the summation is for c = 1,2,...,k and the sum of the class proba-

bilities 7 is 1. then (1.1) gives the conditional deasity of the X's,c

given their labels. It is for this reason that the model used here is called

the conditional population-aixture model. The standard mixture model has

been used for pixel classification; see, e.g., [7]. Further discussion of

the conditional model, in -he context of statistical cluster analysis, and
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further references are given in (10].

A likelihood approach is illuminating in that it can show how

ad hoc optimality criteria (objective functions) which have been proposed

relate to likelihood function in particular probability models.

Note that (1.1) can be written as a product

6
f(x 1) = Hc f(Xt Ic) , (2.1)

where the product is over c = 1,2,...,k. This form is often more convenient,

and we shall use it in what follows.

III. THE SEGMENTATION ALGORI7,HM

Using (2.1) and the conditional independence assumption, one sees that

the joint p.d.f. of the Xt, given the 6t' is

a
tc [h(-t;5d

] ct

This likelihood is to be maximized over all assignments of pixels to classes

and over all permissible parameter values. Many ad hoc schemes can be

applied to this maximization problem. E.g., one way to maximize is to start

with a given segmentation. take each observation successively and shift

it to the first segment for which a shift results in an increase in

likelihood, and loop through the data until no pixel changes classes.

The algorithm developed here is an iterative, back-and-forth procedure.

We first maximize with respect to (w.r.t.) the 8's (holding the 5's

fixed at initial values), then w.r.t. the V's (holding the O's fixed

at the values obtained in the previous stage), then again w.r.t. the O's

(holding the B's fixed at the values obtained in the previous stage),

etc. We stop when no e changes. i.e.. when no pixel changes classes, or

when a specified amount of computer time is used or a specified number of

. ... ..._......._, _ _ _ _ _ _- -_. ...__ _. ..._
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iterations has been performed.

An alternative way of starting the procedure would be to start with

an initial segmentation rather than with initial guesses of the O's.

It is clear that, for fixed values of the O's, say b's, the

likelihood is maximized, for each t, by taking the estimate Tct of 8ct

to be

I if h(x ;b ) = max dh(x b))
t d -t':-d

T = (3.1)"ct

0 otherwise

(In case of ties an arbitrary choice is made; e.g., the observation is

assigned to the tieing class with smallest subscript.) In other words,

segmentation proceeds by allocating pixel t to that class c for which the

estimated-probability density of the observation is largest.

Note that, having tentatively estimated the O's at any stage, i.e.,

having tentatively segmented the image, estimation of the O's is reduced

simply to ordinary maximum likelihood estimation in the particular parametric

family at hand. This is a special advantage of this approach.

Let 0 denote the set of 8's and B the set of 's. Let

L(B, 0), or simply L for short, denote the likelihood. Let B(S)

denote the value of B which maximizes L at the s-th stage of the

iteration, and let a(S ) denote the value of 0 which maximizes L

at the s-rh stage of the iteration. Then 8 maximizes L(B )

w.r.t. 0, and B maximizes LE,8 ( s ' l ) w.r.t. B. This

back-and-forth maximization is an example of the relaxation method fSouthwe1l's

method): see (7, pp. 2"'1ff.} and 110,111. It is true that

L Bs ~ !, es) 2 L(B s , a(s

and - -
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. L((s) 8(s+l)) ( (s ) ,  ( s ) )

That is, at nc stage of the procedure can the value of the likelihood

decrease; however, there is no guarantee of convergence to the global maximum

(neither do alternative clustering algorithms guarantee convergence to the

global maximum of their objective functions). To see how the procedure

can fail to converge to a global maximum, suppose it happens that

(s) (s)) (s)

S >L(B,B ) for all B,
or

L(I(s ) ,  (S 1)) > L(B(s ) , 'G for all G..

Then the procedure will terminate at the s-th stage, without having

necessarily reached the global maximum. That is, if, having maximized

w.r.t. one of the variables B or 0, we happen to find ourselves at a

(relative) maximum w.r.t. the other, we may not reach a global maximum.

In other words, the procedure could conceivably stop at a multidimensional

saddle point.

IV. APPLICATION TO PARTICULAR DISTRIBUTIONS

Now we consider application of this general method to particular

families of distributions. First we consider normal distributions

with common covariance matrix, for in this case it becomes clear how

the model of the present paper establishes a link with some existing

clustering procedures.

A. Multivariate Normal Distributions with Common Covariance Matrix

in the case of normal distributions with means u c = 1.2,...,k,

3na common covariance matrix Z, the likelihood takes the form

(2;)-nP, ,'n / exp[- 9q(x ; ,), . ,
t c ct _t; ,c

where the quadratic form q is given by

-L
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q(x;pE) = (x - u)'I'1(x - U),

where ' denotes vector transpose. This quadratic form is the squared

(Mahalanobis) distance between x and v in the metric of Z. Here

(3.1) is equivalent to
i if q(x ;m S,) = mindq(x ;d

-t c -d -tdS)

Tt= (4.1)

0 otherwise,

where m and S are, respectively, the estimates of _c and

E. That is, pixel t is assigned to that group to whose tentatively

estimated mean vector it is closest, where the distance is in the metric of

the tentatively estimated covariance matrix. Having estimated the B's,

we have multivariate normal observations arranged into groups; maximization

w.r.t. the V.'s and Z is accomplished by taking the group mean

vectors as estimates of the u's, and the within-groups sum-of-products

matrix gives the estimate of E. The procedure is iterated: using

new estimates mc, c = 1,2,... k, and S, the rule (4.1) is applied

again. Then new m's and a new S are calculated; etc. The Mahalanobis

distances can be computed efficiently; see, e.g., [1, p. 107].

Relation to the isodata orocedure: This scheme is a Mahalanobis

distance version of isodata (4]. Isodata proceeds as follows. One

starts with tentative estimates of cluster means and assigns each

individual to the mean to which he is closest. (Isodata uses Euclidean

distance, or modified Euclidean distance in which different weights are

assigned to the p dimensions.) The cluster means are then re-estimated,

and one loops through the data again, reassigning the individuals, etc. Note

the similarity to our scheme: We start with tentative estimates of the means

and covaraiance matrix and assign each individual to the mean to which he is
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closest, using Mahalanobis distance in the metric of the tentatively

estimated covariance matrix. The means and covariance matrix are then

re-estimated, the individuals (pixels) are re-allocated to clusters (segment

classes), etc.

An important difference is that our scheme employs Mahalanobis

distance rather than Euclidean or weighted-Euclidean distance. It is

worth emphasizing that it is the Mahalanobis distance based on the

within-groups sum-of-products matrix that arises here; some data

analysts use the total sum-of-products matrix, which is not

appropriate; see, e.g., [3]. Thus, if one wants to achieve use of a

proper metric by making a linear transformation of the data, this would

have to be done at the beginning of each iteration, making the

appropriate transformation based on the covariance matrix estimate

obtained at the previous iteration.

Relation to the k-means procedure: Arranging the computation

differently, updating the estimates of the means and covariance matrix

after each individual pixel is assigned rather than waiting until all

have been assigned, produces a Mahalanobis-distance version of the k-means

procedure [8].

A numerical example: As a sample "image" the Fisher iris data were

used. This dataset consists of 4 features measured on 150 flowers, 50 in

each of three species. To form a digital image the 150 flowers were arranged

into a 13 x 10 rectangular array, rows 1-3 being species 1, rows 6-10 being

species 2, rows 11-15 being species 3. This means that the true segmentation

is as follows. (Note that, although these data are arranged in a rectangular

array. no use was made of the spatial information. Paper (i] is a

L _______________
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preliminary report of the development of algorithms incorporating spatial and

contextual information.)

TRUE SEGMENTATION:

ROW: COLUMN:
1 2 3 4 5 6 7 8 9 10

3 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1

7 Z 2 2 2 2 2 2 2 2 2

10 2 2 2 2 2 2 21 2 2 21

11 3 3 3 3 3 3 3 3 3 3

12 3 3 3 3 3 3 3 3 3 3
13 3 3 3 3 3 3 3 3 3 3
14 3 3 3 3 3 3 3 3 3 3
15 3 3 3 3 3 3 3 3 3 3

Below are given results obtained by starting with initial means equal

to the measurements on flowers 50, 100 and 150. (These are easy for

the algorithm in the sense that they are in fact from the three

different species, but not so easy as, e.g., flowers 1, 51 and 101,

which are further apart. Starting with means that are from correct

classes is analogous to applications where something is known about the

characteristics of the classes.) The results in successive iterations

were as follows. Convergence was reached on the fourth iteration, i.e.,

on the fifth iteration no pixel changed class. The execution time was

8.8" sec. on an IBM 434!.

21 1 1 1 1
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SEGMENTATION ON ITERATION 1:

ROW: COLUMN: CONFUSION MATRIX:
1 2 3 4 5 6 7 8 9 0 True Class

1111 11111 I I 2 3
2111 1111 1 -i------------1----

3 1 1 1 1 1 1 1 1 1 1 1 50 0 0 50
4 1 1 1 1 1 1 1 1 1 1 Label 2 0 35 1 36
3 1 1 1 1 1 1 1 1 1 3 0 15 49 64
6 3 3 3 2 3 2 3 2 3 2 -----------------
7 2 2 2 3 2 2 2 2 22 50 50 50 150
8 3 2 3 2 2 2 3 3 2 2. 16 errors
9 2 2 2 3 2 3 3 2 2 2 -2 loge L = 258.7

10 2 3 2 2 2 2 2 2 2 2
11 3 3 3 3 3 3 2 3 3 3
12 3 3 3 3 3 3 3 3 3 3
13 3 3 3 3 3 3 3 3 3 3
14 3 3 3 3 3 3 3 3 3 3
15 3 3 3 3 3 3 3 3 3 3

SEGMENTATION ON ITERATION 2:

ROW: COLUMN: CONFUSION MATRIX:
1 2 3 4 5 6 7 8 9 10 True Class

1 I 1 1- 1 1 1 1 1 1 I 2 31
2 1 1 1 1 1 1 1 11 - --------------
3 1 1 1 1 1 1 1 1 1 1 50 0 0 50
4 1 11 11 1 Label 2 0 44 1j 45
5 3 11 11i1 3 0 6 49 35
6 2 2 3 2 2 2 3 2 22 --- --------------
7 2 2 2 2 2 2 2 2 22 50 50 50 150
8 3 2 3 2 2 2 2 3 22 7 errors
9-----------------------2 log e L 21Z.2

10.2.222 2 -1q

11 3 3 3 3 3 3 2 3 3 3
12 3 3 3 3 3 3 3 3 3 3
13 3 3 3 3 3 3 3 3 3 3
14 3 3 3 3 3 3 3 3 3 3
15 3 3 3 3 3 3 3 3 3 3

- . 2:
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SEGMENTATION ON ITERATION 3:

ROW: COLUMN: CONFUSI>'- MATRIX:
1 23 456 7869 10 True Class

111 11 1111I 2 31
211I 1 111 1 ---------------

3 11 11 1 1 111 1 1 50 0 0150
4 1 1111 11 1 11 Label 2 0 47 0147
5 11 1 11 1 1111 3 0 3 50 53
62 22 2 22 22 22 --- --------------
7 22 22 22 2 22 2 50 50 501150
8 3 2 .2 2 2 2 2 3 2 2 3 errors
9 2 2 2 3 2 2 2 2 2 2 -2 log eL =190.4

10 1.2 92 2 2 2 2 2 22
11 3 3 3 3 3 3 3 3 3 3
12 3 3 3 3 3 3 3 3 3 3
13 3 3 3 3 3 3 3 3 3 3
14 3 3 3 3 3 3 3 3 3 3
13 3 3 3 3 3 3 3 3 3 3

SEGMENTATION ON ITERATION 4:

ROW: COLUMN: CONFUSION MATRIX:
1 2 3435 6 7 8 910 True Class

I111111 I1 1111 1i 2 31
2 1 11 11 1 111 1-I--------------
3 11 11 11 1 11 1 1 50 0 0150
4 1 1 111 11 111 Label 2 0 48 1149
5 1 1 1 1 1 1 1 1 1 1 3 I 0 2 49 I 51
6 222 22 22 222 "1--- -----------------
7 22 22 22 22 2 2 50 so 50 150
8 3 2 2 2 2 2 2 2 2 2 3 errors
9 2 2 Z 3 2 2 2 22 2 -2 log eL =187.6

10 Z 2 2 2 2 _1 _ "2 _
11 3 3 3 3 3 3 3 3 3 3
12 3 3 3 3 3 3 3 3 3 3

13 3 3 3 3 3 3 3 3 3 3
14 3 3 3 2 3 3 3 3 3 3
133 3 333 33 33 3

All computations reported here were carried out using FORTRAN computer

programs written by the author. These programs have been sent to the

Statistics Program at the Office of Naval Research for deposit in the

Naval Research Laboratories.
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B. Multivariate Normal Distributions with Different Covariance Matrices

The algorithm generated for this case turns out not to be simply to use

a different Mahalanobis distance for each cluster. (The complication

which occurs is analogous to that in classification, i.e., discriminant

analysis, where one is led to quadratic discriminant functions if the

covariance matrices differ.) The likelihood is

ctl/2
(2)r p  c 1t c / exp[-Zc Zt ct q(t t c)/2].

Equation (3.1) becomes

1 if setting d=c maximizes id1' /2exp[-q(xt;1Jd Id)/ 2 ]

T = (4.2)
ct

0 otherwise

Maximizing the expression in (4.2) is equivalent to minimizing

logeZ I + q(x ;u

This involves not only the Mahalanobis distance between the observation and

the mean of the given class but also the logarithm of the determinant of the

covariance matrix for the given class.

It has been noted (see, e.g., (6]) that in the standard mixture

model for this case the supremum of the likelihood is infinity. This

is reflected in the fact that in our algorithm it would be possible that at

some'stage one of the classes would consist of a single pixel, so that the

tentative estimate of the mean of that group would be the feature vector for

that pixel, and the tentative estimate of the covariance matrix of that

cluster would be undefined.

Numerical example. continued: Results similar to those for the case

of common covariance matrix were obtained using the algorithm for this case.

with the adjustment for determinants of the covariance matrices. However,

when these adjustments were omitted, and the clustering was performed

__ __ __ __ _ __I| ~A >
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using only the Mahalanobis distances, without adding the logarithm

of the determinant of the covariance matrix, the results were poor.

Fifty flowers were correctly assigned to class 1, but only 6 were assigned

to class 2, the remaining 94 being assigned to class 3. Also, it took

twelve iterations and 27 sec.'s of CPU time to obtain this poor result.

V. COMPARISON WITH THE METHOD BASED ON THE STANDARD MIXTURE MODEL

Clustering based on the standard mixture model was considered in [14].

Under that model the posterior probability that Individual t belongs to

Class c is

irc h(x ;a )/zd id h(tx;5d) (3.1)

Individual t is assigned to that class c for which the estimate of (5.1) is

largest, i.e., to that class for which the estimated posterior probability of

membership is largest. On the other hand, with the conditional mixture

model, Individual t is assigned to that class c for which the estimate of the

density h(x ;6 ) is largest.

Wolfe [14] has provided computer programs for the standard mixture model

in the case of normal distributions. As is well known, the likelihood

equations for mixture problems are relatively complicated. In 1141 they are

_
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solved by a multivariate Newton-Raphson iterative method. This involves the

assignment of arbitrary initial values to start the iterative solution, as

does the method described here.

VI. SOME REMARKS ON STATISTICAL INFERENCE

The maximum likelihood estimate of (B,O8 is the value (b,5) for which

the likelihood L is largest. The quantity L(Ub.t) is the corresponding

maximum value of the likelihood. To approximate (b,t) one uses the

algorithm. Let A(B,O) = L(B,0)/L(bt). Let F denote the large

sample cumulative distribution function (c.d.f.) of -2 log e A,

i.e.,
limn#,Prj-2 loge A,) S x) = F(x).

Suppose that F is independent of the true values (B,O). E.g., it may be

the c.d.f. of a chi-square distribution with an appropriate number of

degrees of freedom; it is necessary to investigate the extent to which

the large sample theory of the generalized likelihood ratio applies when

there are incidental parameters (such as the labels).

A. Confidence Sets

Let x denote the upper a-th percentage point of F. Then

1-a = F(x ) Pr[-2 log eA(B,G) S x 9

= Pr[-2 log L(B,O) S xa + 2 log L(bt)]

so that

((B,0): -2 log L(B,O) S x + 2 loeg e(b,t))

is an approximate 100(1-a), confidence set for (B.0). Denote by

( ', ') the estimates produced by the algorithm. Then, since there

k _ _ __ _ _
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is a possibility these have not quite converged to the maximum likelihood

estimates (b,t), we have L(b',t') S L(b,t). Thus a conservative

confidence set (one that contains more values of (B,0) than the true

confidence set and thus has confidence coefficient at least l-a ) is

((B,O): -2 logeL(B,O) 5 x + 20logL ' t')).

B. Some Remarks on Choice of Number of Classes

One ad hoc approach to the choice of number of classes is to

follow the suggestion in [8] of introducing refinement and coarsening

parameters R and C such that two clusters join when their mean

vectors are less than C units apart and a cluster splits when its

diameter exceeds R.

Another approach is to run the algorithm with different choices of k and

compare the results. Note that the likelihood function is a different

function for different values of k. Denote this dependence upon k by writing

the likelihood as LYB(kO(k)). Let b(k), t(k) denote the maximum likelihood

esti'mates for fixed k. Following the approach of [4 for the standard

mixture model, one might make a sequence of hypothesis tests to decide on k,

first comparing L,(b(.2),t(2) with L (b(2').t'3)'.then if necessary

comparing L (b(3),t(3)) with L (b(4),t(4)), etc. In [14] the asymptotic
3 - -

I
chi-square distribution of the generalized likelihood ratio is used; even in

the context of the standard mixture model this may not be the correct asymptotic

distribution.

Still another approach is to use Akaike's information criterion (AIC).

See. e.g., This St3tistic is

AIC(k) = -2 log [max L,) + 2 m(k).

Here m(ki is the number of independent parameters estimated when using

-i . . . . . . . .. ,
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k classes. According to this viewpoint on model selection, the best model

is the one that minimizes AIC. According to AIC, inclusion of an additional

parameter isappropriate if log e[max LI increases by one unit or more,

i.e., if max L increases by a factor of e or more.

Numerical example, continued: There is some question as to whether

the Fisher iris data should be treated as two or as three species and

whether separate covariance matrices should be used for the species.

(See [3, pp. 109-110].) Accordingly, we compare by AIC the four models

resulting from taking k=2 and 3 and using common and separate covariance

matrices. The results were as follows.

Values of AIC

common separate
covariance covariance

k matrix matrices

2 437.9 293.8
3 231.6 123.3

For both values of k, the model with separate covariance matrices fared

better, and k=3 gave a smaller value of AIC than did k=2.

VII. DISCUSSION

A. Conclusions

A probability framework for clustering/segmentation problems has been

discussed. A general method of producing algorithms which correspond to a

method of iterated maximum likelihood has been given. The general method

given here is plausible, is linked to a probability model, and is easy to

program. In the case of multivariate normal distributions with common

covariance matrix the general method produces schemes which can be viewed as

. . ... . ... .. .... . . . ...... _ _ _ __m _ _ .. ._"_.. . .. _ _ _ _ ... . . . . .._-.... . . ..._ _. .
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improved versions of some existing schemes.

B. Remarks

The focus here has been on the parametric case, but the methods

discussed might be applied nonparametrically, by estimating the p.d.f.'s

f(xlc) as segmentation proceeds, using standard methods of density

estimation.

Algorithms based on a likelihood function are based on the raw data

matrix, in contrast to may clustering procedures which are based on a matrix

of pairwise similarities or distances. The latter procedures have the

advantage of applicability to problems where a raw data matrix is not

available. When the raw data are available, such algorithms have the

theoretical disadvantage of not extracting all the information from the

observations and the computational disadvantage of preliminary computation of

all the pairwise distances.

C. Alternative Models

The focus here has been on a model in which the labels are treated as

functionally independent. In the standard mixture model they become

random variables and are treated as statistically independent.

To the assumption of Section I is seems reasonable to add:

--Each segment consists of more than one pixel.

As a corollary to this assumption, it follows that the labels are

functionally related, in as much as each label must be equal to one of its

eight neighbors. It would be interesting to study the problem resulting

from maximizing the likelihood function under this condition.

Alterna:ively. if the labels are then treated as random. they would be a

two-dimensional Markov process. The author has developed an algorithm for
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estimation in this Markov model. Paper (111 is a preliminary report on

this; a more detailed report is forthcoming.
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